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Controlling the flux of reactive 
species: a case study on thin film 
deposition in an aniline/argon 
plasma
D. Sciacqua1, C. Pattyn1, A. Jagodar1, E. von Wahl1, T. Lecas1, T. Strunskus2, E. Kovacevic1 & 
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The plasma based synthesis of thin films is frequently used to deposit ultra-thin and pinhole-free 
films on a wide class of different substrates. However, the synthesis of thin films by means of low 
temperature plasmas is rather complex due to the great number of different species (neutrals, 
radicals, ions) that are potentially involved in the deposition process. This contribution deals with 
polymerization processes in a capacitively coupled discharge operated in a mixture of argon and 
aniline where the latter is a monomer, which is used for the production of plasma-polymerized 
polyaniline, a material belonging to the class of conductive polymers. This work will present a 
particular experimental approach that allows to (partially) distinguish the contribution of different 
species to the film growth and thus to control to a certain extent the properties of the resulting 
material. The control of the species flux emerging from the plasma and contributing to the film 
growth also sheds new light on the deposition process, in particular with respect to the role of the ion 
component. The analysis of the produced films has been performed by means of Fourier Transform 
Infrared spectroscopy (FTIR) and Near Edge X-ray Absorption Fine Structure spectroscopy (NEXAFS).

Low temperature plasmas with their unique non-equilibrium properties are frequently used in industrial pro-
cesses for the deposition of thin films or the activation of surfaces1−4. They offer fast, environment friendly and 
scalable possibilities for the mass fabrication of new materials and products. Moreover, plasma polymerization is 
a technique in particular suitable for the production of extremely uniform, ultrathin and pinhole-free layers that 
strongly adhere to a great class of different substrates5. A further advantage of this technique is that it eliminates 
various steps needed in more conventional coating processes. In addition it is solvent-free and does not involve, 
in contrast to many other methods, the use of costly chemicals.

An interesting example of the application of Plasma Enhanced Chemical Vapor Deposition (PECVD) is the 
plasma deposition of conductive polymers. Conductive polymers have attracted a great interest in recent years 
due to their unique properties, which make them suitable for a wide range of applications in electronics, opto-
electronics and photonics6,7. Among the conductive polymers, polyaniline emerges: it has a good environmental 
stability and is easy to obtain starting from an inexpensive monomer. Moreover, it can be efficiently doped with 
different kinds of anions (I, Cl) or organic acids in order to improve its conductivity8−11. The main applications 
concern the production of light emitting diodes12−14, photovoltaics15,16, electromagnetic shielding17, and anticor-
rosion coatings for metals18, sensors19,20, super capacitors and energy storage devices21−24. The physical, chemical 
and morphological properties of conductive polymers in general and polyaniline in particular strongly depend 
on their composition and on the synthesis method25. To date, several methods are known in literature as e.g. 
chemical polymerization26, electrochemical polymerization27 and last but not least plasma polymerization8,25,28−31.

In plasma polymerization processes the electron impact dissociation of the original monomer is responsible 
for the initial formation of various species including neutral radicals as well as positive and negative ions. These 
species can induce subsequent polymerization reactions leading to the formation of larger oligomers28,32−35 and, 
depending on the process parameters, eventually even to the formation of nanoparticles28,29,36−38. All these species, 
which are formed in the plasma volume, contribute to the flux of species impinging on the substrate effecting the 
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film growth in a synergistic way (see e.g.39,40 for the role of positive ions in the deposition of thin films from vari-
ous precursors41,42, for the discussion of synergistic effects and their importance for radical induced film growth43, 
for the potential role of negative ions in pulsed plasmas and44 for the possible contribution of nanoclusters to 
the film growth in silane plasmas). The exact composition of the species flux for a given precursor, and thus the 
properties of plasma produced thin polymer films, generally depends on a great number of possible external 
parameters as e.g.: process pressure, electrode distance, gas mixture ratios (noble gas component/monomer), 
power, pulse frequency, duty cycle or ratio input flow rate/pumping speed (residence time)45. The aim of this 
contribution concerns the study of thin film deposition in an aniline/argon plasma and the possible control of 
the species flux, and thus the film properties by using a specific structured electrode later referred to as “channel 
electrode”. Although the results of this work refer to the aniline chemistry, the conception of the experiment can 
easily be transferred not only to other scientific setups but also to industrial applications. The characterization 
of the deposited films is done by profilometry, ellipsometry, FTIR and NEXAFS spectroscopy.

Experimental set up
The thin films are deposited in a capacitively coupled discharge (13.56 MHz) operated in an aniline/argon 
mixture. The experimental set up is shown in Fig. 1 and consists of a custom-build cylindrical reactor made of 
a large stainless steel chamber of 70 cm diameter and 72 cm height coupled with a vacuum pumping system 
(primary and turbomolecular).

The RF-electrodes consist of stainless steel with a diameter of 12 cm and are separated by 5.5 cm, where the 
powered electrode is the top one. The monomer vapor is generated from a liquid aniline precursor (Sigma Aldrich 
242284) and is introduced into the reaction chamber through an evaporator, the NanoSource device developed by 
Omicron Technologies. The plasma-polymerized polyaniline deposition starts with pumping down the vacuum 
chamber to 10−6 mbar before each process and subsequently with introducing 20 sccm of argon (carrier gas) and 
1 sccm of aniline. The working pressure is stabilized at 0.18 mbar in all experiments. The input average power 
is set to about 10 W and the discharge is pulsed at 25 Hz with a duty cycle of 0.5. These parameter (gas mixing 
ratio and pulsing frequency) are chosen in order to suppress the formation of nanoparticles within the plasma 
volume and to28 and to avoid in this way the contamination of our substrate with nanoparticles.

Figure 2 shows a sketch of the “channel electrode” which is used to control—to a certain extent—the flux 
of species reaching the substrate. The electrode consists of a metal plate, characterized by its thickness l and by 
holes/channels, which are drilled into the metal plate, characterized by their diameter d.

It is shown in46 that structured electrodes can have a tremendous influence on the electron heating dynamics 
and charge carrier density profiles in capacitively coupled radio frequency plasmas (above and inside the elec-
trode structures). The investigations carried out in46 were performed in neon. In the present case the situation 
is more complex due to the reactive nature of the used gas mixture. In this case the sticking of reactive species 
to the side walls of the hole can add an additional filtering effect: species with a high sticking coefficient have 
smaller probabilities to reach the bottom of the hole and thus cannot contribute to the growth of the film at 
the bottom. The filter effect can be controlled by the aspect ratio of the hole, plate thickness l to diameter d. To 
guarantee a homogeneous film deposition the substrate can be separated from the holes by a certain distance g. 
In the present experiment, the metal plate has a thickness of l = 3 cm and features only 4 holes but with different 
diameters (d = 0.5 cm, 1.0 cm, 2.0 cm and 2.5 cm). The silicon wafers are attached to the metal plate directly 
beneath these holes (g = 0 cm).

Figure 1.   Scheme of the experimental set up.
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The material characterization of the resulting thin films is realized by NEXAFS spectroscopy performed at the 
synchrotron facility of BESSY II (Helmholtz Zentrum Berlin, Germany) at the HESGM beamline. The spectra 
are taken in total electron yield using a self-built double channel-plate electron detector. The FTIR analysis of 
the deposited films is performed ex-situ, using a Bruker Vertex 70 Fourier-Transform Infrared Spectrometer. 
The film thickness is measured by ex-situ ellipsometry (Horiba UVisel 1, using a Cauchy dispersion model) and 
by means of a profilometer (Bruker DektaK). The plasma itself is monitored during the experiments by means 
of microwave interferometry, a method that delivers information about the electron density. These measure-
ments of the electron density are performed using a S-band microwave interferometer MWI 2650-L (see also47).

Experimental results and discussion
Figure 3 shows the ex-situ FTIR spectra of thin films from samples placed beneath the different holes. The spec-
trum in black refers to the sample placed on top of the electrode (see Fig. 2b).

The band around 3362 cm−1 can be associated to N–H vibrations8,25,31,36,48. The next two bands around 
3020 cm−1 and 2930 cm−1 can be referred to C–H stretching modes in aromatic structures48−50 or to C–H 
stretching modes related to aliphatic compounds8,31,49,50. The peak around 2217 cm−1 can be attributed to C≡N 
bonds49−51. At 1496 and 1600 cm−1 the typical absorption peaks for C=C stretching of benzenoid and quinoid 
rings are observed8,25,49,52,53. The bands at 1173 cm−1 and at 1316 cm−1 arise from C–C and C=C interactions and 
C–N stretching31,53. The band at 1452 cm−1 can be attributed to C–H deformation54.

The spectra in red, blue and green in Fig. 3 represent the spectra of films from samples that are placed under 
the different holes of the structured electrode. Compared to the sample placed on top of the electrode, these 

Figure 2.   (a) General scheme of the channel electrode and (b) magnification of a single channel. The substrates 
are positioned directly below the holes (distance between sample and electrode g = 0 cm). In the experiment 
presented here, the metal plate with a thickness of l = 3 cm has only 4 holes/channels with diameters of 0.5, 1, 2 
and 2.5 cm. To evaluate the effect of the holes, one reference wafer is placed on top of the metal plate during the 
experiments.
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Figure 3.   Ex-situ FTIR spectra of samples placed in different positions during the growth process. The black 
line shows the spectrum of the sample placed on top of the electrode. The red, blue and green line show spectra 
of samples placed under the holes with 2.5 cm, 2 cm and 1 cm diameter, respectively.
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spectra exhibit an overall decrease in absorbance. This reduction is the stronger, the smaller the size of the hole 
under which the sample is placed. It can be explained by a decrease in film thickness of the corresponding sam-
ples. The growth rate, measured by means of ellipsometry and profilometry, reduces from 4.0 nm/min for the 
sample placed on top to 0.25 nm/min for the sample placed under the 1 cm hole. Besides the overall decrease of 
the absorbance, the relative intensities of the individual bands with respect to each other are also changing. The 
peaks referred to benzenoid (1496 cm−1), quinoid (1600 cm−1), C≡N (2217 cm−1) and C–H (2930 cm−1) show a 
rather similar relative decrease – when going from the top to the bottom in Fig. 2. In comparison the decrease in 
absorbance at 2930 cm−1 (C–H stretching) is much less pronounced. These results show that, besides the growth 
rate, also the chemical structure of the thin films is altered depending on the size of the hole.

This is confirmed by the NEXAFS spectra of the C K-edge and N K-edge shown in Fig. 4a,b. The spectra are 
acquired in total electron yield (TEY) mode. After acquisition the spectra are normalized to the photon flux by 
division through the transmission spectrum obtained on a freshly sputtered Au sample. NEXAFS is particular 
suitable to study systems with conjugated π-electron systems. In NEXAFS, changes in unsaturation are directly 
reflected in changes in intensities of the respective π*-resonances observed at the K-edge for each element.

The C K-edge spectrum of the sample placed on top (black) shows a sharp resonant feature at 285 eV (A) 
which is attributed to the C 1s → π* resonance of C=C bonds in aromatic systems43,55−59. This resonance is typi-
cal for sp2 hybridized carbon atoms in e.g. aromatic compounds and allows to assess the degree of unsaturation 
in carbonaceous compounds. The second resonance peak localized at around 286.8 eV (B) can be attributed to 
the C 1s → π* transition of carbon atoms bound to nitrogen43,55−59. Around 287.7 eV (C) is a small resonance 
indicating the presence of Rydberg states of C–H. The fourth resonance around 288.5 eV (D) can be related to 
the C 1s → π* resonance transition of C=O60,61. The broad bands above 290 eV are due to the C 1s → σ* transi-
tions of different bonding environments (C–C, C–N, C–O)60,61.

Figure 4 shows that a reduction of the hole size leads to a strong decrease of the resonance peak at 285 eV. 
This indicates a loss of the aromatic character and is in agreement with the FTIR spectra in Fig. 3. The by far 
lowest intensity of this resonance appears for the sample placed under the 1 cm hole, where also the FTIR spec-
trum shows the almost complete disappearance of the aromatic structure. Correspondingly, the σ* resonances 
around 294 eV displays the highest intensity for the sample placed under the smallest hole. As expected, for these 
resonances the intensity is increasing with decreasing hole size. The Rydberg states, localized around 287.7 eV 
and indicating the contribution of C–H in the material, can be related to the FTIR peak around 2930 cm−1 cor-
responding to aliphatic C–H. In agreement with the FTIR results the resonance peak at 287.7 eV is the strongest 
for the sample placed below the 1 cm hole.

No clear trend can be stated on the other hand for the resonance around 286.8 eV due to multiple contribu-
tions of many carbon–nitrogen species in the material, e.g. imine, nitrile and amine which have to be further 
analyzed in the N K-edge. Here, Fig. 4b, the resonance near 398.6 eV (A′) corresponds most likely to the N 
1 s → π* resonance of imine-like N-species55,62,63 while the intense resonant feature around 399.6 eV (B′) can be 
attributed to the N 1s → π* transition of nitrile groups (–C≡N). The less intense peak around 401.8 eV (C′) is 
due to the N 1s → π* transition of amine. While the small amine resonance peak at 401.8 eV is observed for the 
samples placed on top and in the 2.5 and 2.0 cm holes, the sample placed in the smallest hole of 1 cm does not 
show any significant presence of this feature.

Figure 4.   (a) NEXAFS C K-edge and (b) N K-edge spectra of thin films deposited on silicon samples placed in 
different positions: the black line shows the spectrum of the sample placed on top of the electrode, the red, blue, 
and green line show the spectra of the samples placed below the holes with diameters of 2.5 cm, 2.0 cm, and 
1.0 cm, respectively.
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However, the identification of the peaks is non-trivial due to several possible resonances originating from 
nitrile groups63.

In principle, the filtering effects of the holes concern both, neutral radicals and ions. In order to study the 
contributions of ions to the deposition process a stainless steel grid with a transparency of 47% is placed on top of 
the grounded structured electrode. This grid acts as an electrode restricting the plasma to regions above the hole 
while allowing the flux of radicals to reach the substrate64,65: i.e., the grid preferentially blocks the contribution of 
the ions while it allows about 50% (equal to the transparency of the grid) of the radicals to pass it. (In the follow-
ing experiment, the effect of the grid is only investigated for the hole with the largest diameter, 2.5 cm). The most 
obvious effect of the grid concerns the growth rate of the deposited films. The value of the growth rate exhibits a 
reduction by a factor higher than 10 when a grid is placed on the top of the electrode. NEXAFS C K-edge and N 
K-edge spectra in Fig. 5a,b show that also the film composition is affected by the presence of the grid.

In Fig. 5a the sample placed under the 2.5 cm hole with grid (purple line) shows a much smaller resonance 
intensity at 285 eV than the sample under the same 2.5 cm hole without grid (red line). This indicates a notable 
decrease of the aromatic characteristic of the film which comes along with an increase of the intensity of the σ* 
resonances around 294 eV underlining the stronger aliphatic feature of the film. It is worth to mention that the 
sample placed under the 2.5 cm hole with grid shows a similar behavior as the sample placed under the 1 cm 
hole without grid (green line in Fig. 5).

A similar trend can be observed for the N K-edge in Fig. 5b. The spectra of the sample placed under the 1 cm 
hole and the sample placed under the grid exhibit again a quite comparable behavior.

The results presented in Fig. 5 and the fact that the growth rate is substantially reduced due to the presence of 
the grid suggest that the ionic component plays an important role in the deposition process. There are two pos-
sible mechanisms that could explain the experimental findings: either the ions directly contribute to the growth 
of the film and are responsible for most of the film growth (see e.g. the discussion in39,66,67) or they activate the 
surface by creating dangling bonds which can then act as reaction sites either for the aniline molecule itself or 
for radicals created in the plasma. The latter, better known from plasma etching, is referred to as ion-neutral 
synergistic effect42.

In principle, the ion flux to the substrate -which consists mainly of positive aniline ions with a mass of 93 
amu (see28) could be sufficiently high in our discharge to support the first mechanism. (Although the argon 
concentration is much larger than the aniline concentration in our experiment mass spectrometer measure-
ments of positive ions28 show that the most abundant positive ion in our case is the aniline ion with a mass of 
93 amu. (This can be explained by the fact that aniline has a much smaller ionization potential (7.7 eV) than 
argon (15.7 eV)). Measurements performed by means of microwave interferometry give a value of 5 × 1015 m−3 
for the electron density. Taking this value, assuming an electron temperature even as low as 1 eV and applying 
the rather simple Bohm formula39:

gives a time averaged ion flux of about Γi = 1.5 × 1018 ions/(m2 s). Assuming a mass density even as large as 2 g/
cm3 for the deposited thin films and a sticking coefficient of 1 results in a -purely ion supported- growth rate of 
about 8 nm/min which is about 2 times higher than the measured growth rate. (A discussion about the sticking 

Ŵi = 0.61 · ni

√

kTe
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Figure 5.   In (a) NEXAFS C K-edge and in (b) N K-edge spectra of samples placed under the 2.5 cm hole which 
is either covered with a grid (purple) or uncovered (red). The green line shows the spectrum of the sample 
placed under the hole of 1.0 cm diameter for comparison.
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coefficient of positive ions can be found e.g. in39,40). Even as this is twice the value of the observed growth rate it 
is important to stress, that this simple estimation does not rule out, that the ion induced surface activation (the 
second mechanism discussed above) does not play a role in the growth of our films.

Conclusion
The aim of this work is to control the flux of different species that emerge from a reactive plasma and to control 
thus the properties of plasma deposited thin films. This is achieved by using a particular “channel electrode” 
design that is easy to implement in any given reactor for either scientific or industrial purpose. As a case study 
the deposition from an aniline/argon plasma is investigated.

The material characterization by means of FTIR and NEXAFS spectra shows that this electrode design effec-
tively allows to tune the chemistry of the deposited material from highly aromatic to aliphatic amine. A similar 
result is observed by covering the electrode with a stainless steel grid, which is used to reduce preferentially the 
positive ion flux arriving on the substrate. This demonstrates the important role of positive ions for the deposition 
process in our particular setup and chemistry, affecting not only the deposition rate but also the composition 
of the deposited films.

It has to be mentioned, however, that the composition and magnitude of the neutral and ion fluxes for a given 
chemistry strongly depend on the discharge parameters. In particular, neutral radicals with a smaller sticking 
coefficient might be prone to losses due to pumping (a loss channel that depends on the pumping speed and on 
the actual volume of the process chamber and the plasma) and to losses due to electron impact fragmentation (a 
loss channel depending on electron temperature, electron density and residence time). Consequently, the role 
of neutral radicals and vice versa the role of the positive ions in the deposition process may strongly depend on 
the parameters and may therefore vary in different experiments.
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